Towards Realistic Urban Traffic Experiments Using DFROUTER: Heuristic, Validation and Extensions.
Jorge Luis Zambrano-MartinezCarlos Tavares CalafateDavid SolerJuan-Carlos CanoPublished in: Sensors (Basel, Switzerland) (2017)
Traffic congestion is an important problem faced by Intelligent Transportation Systems (ITS), requiring models that allow predicting the impact of different solutions on urban traffic flow. Such an approach typically requires the use of simulations, which should be as realistic as possible. However, achieving high degrees of realism can be complex when the actual traffic patterns, defined through an Origin/Destination (O-D) matrix for the vehicles in a city, remain unknown. Thus, the main contribution of this paper is a heuristic for improving traffic congestion modeling. In particular, we propose a procedure that, starting from real induction loop measurements made available by traffic authorities, iteratively refines the output of DFROUTER, which is a module provided by the SUMO (Simulation of Urban MObility) tool. This way, it is able to generate an O-D matrix for traffic that resembles the real traffic distribution and that can be directly imported by SUMO. We apply our technique to the city of Valencia, and we then compare the obtained results against other existing traffic mobility data for the cities of Cologne (Germany) and Bologna (Italy), thereby validating our approach. We also use our technique to determine what degree of congestion is expectable if certain conditions cause additional traffic to circulate in the city, adopting both a uniform pattern and a hotspot-based pattern for traffic injection to demonstrate how to regulate the overall number of vehicles in the city. This study allows evaluating the impact of vehicle flow changes on the overall traffic congestion levels.