Login / Signup

Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix.

Jason W SidabrasJifu DuanMartin WinklerThomas HappeRana HusseinAthina ZouniDieter SuterAlexander SchneggWolfgang LubitzEdward J Reijerse
Published in: Science advances (2019)
Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typical for protein crystallography (0.05 to 0.3mm) provide insufficient signal intensity. In this work, we present a microwave self-resonant microhelix for nanoliter samples that can be implemented in a commercial X-band (9.5 GHz) EPR spectrometer. The self-resonant microhelix provides a measured signal-to-noise improvement up to a factor of 28 with respect to commercial EPR resonators. This work opens up the possibility to use advanced EPR techniques for studying protein single crystals of dimensions typical for x-ray crystallography. The technique is demonstrated by EPR experiments on single crystal [FeFe]-hydrogenase (Clostridium pasteurianum; CpI) with dimensions of 0.3 mm by 0.1 mm by 0.1 mm, yielding a proposed g-tensor orientation of the Hox state.
Keyphrases
  • energy transfer
  • high resolution
  • protein protein
  • room temperature
  • amino acid
  • binding protein
  • magnetic resonance imaging
  • magnetic resonance
  • ionic liquid
  • quantum dots