Login / Signup

Designed Peptide Assemblies for Efficient Gene Delivery.

Hongchao MaMeiwen Cao
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
The safe and efficient delivery of nucleic acids including DNA, mRNA, siRNA, and miRNA into targeted cells is critical for gene therapy. Currently, viral gene vectors are very popular, but they have potential toxicity and insecurity. Therefore, the development of nonviral vectors has attracted considerable research attention. Peptide assemblies are superior candidates for being used as gene vectors by having good biocompatibility, versatile molecular design, excellent assembly capacity, ease of modification, and stimuli responsivity. The de novo designed peptides not only can induce efficient condensation of nucleic acids into compacted nanoparticles and protect them from enzymatic digestion but also can effectively overcome biological barriers and improve gene delivery efficiency through targeted delivery, enhanced cellular uptake, improved endolysosomal escape, and nuclear importation. By having these merits, peptidic gene vectors are developing fast, showing outstanding advantages compared to liposome and polymer vectors. This Perspective focuses on peptidic gene delivery systems by emphasizing the molecular design strategies for meeting the criteria of gene condensation, protection from nuclease degradation, cellular uptake, endolysosomal escape, and so on. The new arising research area of peptide-based artificial viruses for gene and ribonucleoprotein delivery has also been reviewed. The challenges and future perspectives are put forward, aiming to provide a conclusive guide for the development of peptidic delivery systems to achieve efficient gene therapy.
Keyphrases