Molecular mechanisms of Chengshi Beixie Fenqing Decoction based on network pharmacology: pivotal roles of relaxin signaling pathway and its associated target proteins against Benign prostatic hyperplasia.
Bing-Hui YanQi-Xuan XuXiao GeMing-Tong GaoYun LiLiang GuoPo HuYang PanPublished in: Journal of biomolecular structure & dynamics (2023)
Benign prostatic hyperplasia (BPH) is a common disease that affects the quality of life of middle-aged and older men. We investigated the therapeutical effects of Chengshi Beixie Fenqing Decoction (CBFD), a classic traditional Chinese medicine prescription, on BPH through in vivo model and network pharmacology. Bioactives in CBFD were detected through UPLC-Q-Tof-MS/MS and GC-MS, and filtered by the modified Lipinski's rule. Target proteins associated with the filtered compounds and BPH are selected from public databases. Venn diagram identified the overlapping target proteins between the bioactives-interacted target proteins and the BPH-targeted proteins. The bioactive-protein interactive networking of BPH was analyzed through the KEGG pathway on STRING to identify potential ligand-target and visualized the rich factors on the R packet. After that, the molecular docking test (MDT) was performed between bioactives and target proteins. It showed that the mechanism of CBFD against BPH was related to 104 signaling pathways of 42 compounds. AKT1, 6-demethyl-4'-methyl- N -methylcoclaurine and relaxin signaling pathways were selected as a hub target, key bioactivitie and hub signaling pathway, respectively. In addition, three major compounds, 6-demethyl-4'-methyl- N -methylcoclaurine, isoliensinine and liensinine, had the highest affinity on MDT for the three crucial target proteins, AKT1, JUN and MAPK1. These proteins were associated with the relaxin signaling pathway, which regulated the level of nitric oxide and is implicated in both BPH development and CBFD. We concluded that the three key bioactivities found in Plumula nelumbinis of CBFD may contribute to improving BPH condition by activating the relaxin signaling pathways.Communicated by Ramaswamy H. Sarma.
Keyphrases
- benign prostatic hyperplasia
- signaling pathway
- lower urinary tract symptoms
- pi k akt
- nitric oxide
- molecular docking
- induced apoptosis
- epithelial mesenchymal transition
- cell proliferation
- emergency department
- healthcare
- mass spectrometry
- electronic health record
- machine learning
- middle aged
- endoplasmic reticulum stress
- drug delivery
- transcription factor
- cancer therapy
- drug induced
- physical activity
- nitric oxide synthase