Login / Signup

Self-incompatibility and the genetic architecture of inbreeding depression.

Daniel J SchoenSarah J Baldwin
Published in: The New phytologist (2022)
Inbreeding depression plays a fundamental role in evolution. To help detect and characterize the loci that underlie inbreeding depression, we used bud pollination and salt treatments to circumvent self-incompatibility (SI) in plants from populations of Leavenworthia alabamica and produced families of progeny that were then genotyped at genetically mapped single-nucleotide polymorphism (SNP) loci. Using Bayesian inference, the segregation patterns for each SNP were used to explore support for different dominance and selection coefficients at linked viability loci in different genomic regions. There was support for several partially recessive viability loci in one of the populations, and one such locus mapped to the genomic region of the novel SI locus in L. alabamica. These results are consistent with earlier findings that showed purging of inbreeding depression for germination rate in L. alabamica. They are also consistent with expectations from evolutionary genetic theory that recessive, deleterious alleles linked to loci under balancing selection can be sheltered from selection.
Keyphrases