Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System.
Changyong ZhangJinxing MaJingke SongCalvin HeTrevor David WaitePublished in: Environmental science & technology (2018)
We have previously described a novel flow-electrode capacitive deionization (FCDI) unit combined with a hydrophobic gas-permeable hollow fiber membrane contactor (designated "CapAmm") and presented results showing efficient recovery of ammonia from dilute synthetic wastewaters (Zhang et al., Environ. Sci. Technol. Lett. 2018, 5, 43-49). We extend this earlier study here with description of an FCDI system with integrated flat sheet gas permeable membrane with comprehensive assessment of ammonia recovery performance from both dilute and concentrated wastewaters. The integrated CapAmm cell exhibited excellent ammonia removal and recovery efficiencies (up to ∼90% and ∼80% respectively). The energy consumptions for ammonia recovery from low-strength (i.e., domestic) and high-strength (i.e., synthetic urine) wastewaters were 20.4 kWh kg-1 N and 7.8 kWh kg-1 N, respectively, with these values comparable to those of more conventional alternatives. Stable ammonia recovery and salt removal performance was achieved over more than two days of continuous operation with ammonia concentrated by ∼80 times that of the feed stream. These results demonstrate that the integrated CapAmm system described here could be a cost-effective technology capable of treating wastewaters and realizing both nutrient recovery and water reclamation in a sustainable manner.