Login / Signup

Optimizing the Desorption Technology of Total Flavonoids of Ginkgo Biloba from Separating Materials of Activated Carbon.

Lihu ZhangXiaomeng ZhangQi LiWei XiaoErzheng SuFuliang CaoLinguo Zhao
Published in: ACS omega (2021)
Activated carbon adsorption is one of the processes used to produce ginkgolides from the extract of Ginkgo biloba (EGB) in most enterprises. However, the problem is that the ginkgolides can be eluted by ethanol after the Ginkgo biloba extracts are adsorbed by activated carbon, while total ginkgo flavonoids (TGFs) would form dead adsorption, leading to the ineffective utilization of TGFs. In this paper, the maximum adsorption capacity of TGFs by activated carbon was 226.7 mg/g activated carbon at pH 5, and the adsorption of TGFs was easier and more favorable to monolayer adsorption. On this basis, the technical process of desorption of TGFs from activated carbon preparation technology was optimized by using the response surface optimization technique. Under the optimum process (the elution volume was 116.75 mL, the ethanol concentration in the eluent was 73.4%, the elution temperature was 31.5 °C, and the ammonia concentration was 5.7%), the desorption rate of TGFs was 74.56%. Scanning electron microscopy morphological analysis showed that the used activated carbon had a wide pore size distribution, with the micropore pore size mainly concentrated around 0.64 and 1.00 nm and the mesopore pore size mainly concentrated between 2.89 and 39.5 nm. In addition, the molecular weight of ginkgo flavonoids is mainly distributed between 500 and 1000 Da, which can be transported to the micropores through the mesopore channels. On the other hand, there is a force between the flavonoids and the acidic oxygen-containing functional groups on the pore surface, which is the main reason for the formation of dead adsorption. The obtained results contribute to further improving the process of adsorbing and desorbing TGFs from EGB and lay a foundation for the development of more suitable activated carbon.
Keyphrases
  • aqueous solution
  • electron microscopy
  • photodynamic therapy
  • oxidative stress
  • single molecule
  • room temperature