Spike ripples localize the epileptogenic zone best: an international intracranial study.
Wen ShiDana ShawKatherine G WalshXue HanUri T EdenRobert M RichardsonStephen V GliskeJulia JacobsBenjamin H BrinkmanGregory A WorrellWilliam C StaceyBirgit FrauscherJohn ThomasMark A KramerCatherine J ChuPublished in: Brain : a journal of neurology (2024)
We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone (EZ) compared to other leading interictal biomarkers in a multicenter, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centers who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection (ILAE 1 outcome) and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz), and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001, P < 0.001). Among ILAE 1 subjects, the mean spike ripple rate was higher in the RV (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared to ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01), or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicenter cohort, when surgical resection was successful, the majority of spike ripples were removed. Further, automatically detected spike ripples have improved specificity for epileptogenic tissue compared to spikes, spike-gamma, wideband HFOs, ripples, and fast ripples.