Login / Signup

Interactions between dietary carbohydrate and thiamine: implications on the growth performance and intestinal mitochondrial biogenesis and function of Megalobrama amblycephala.

Chao XuYuan-You LiPaul B BrownWen-Bin LiuLiu-Ling GaoZhi-Rong DingXiang-Fei LiDi-Zhi Xie
Published in: The British journal of nutrition (2021)
A12-week experiment was conducted to evaluate the influences of thiamine ongrowth performance, and intestinal mitochondrial biogenesis and function of Megalobramaamblycephala fed a high-carbohydrate (HC) diet. Fish (24·73 (sem 0·45) g) were randomly assigned to one of four diets: two carbohydrate (CHO) levels (30 and 45 %) and two thiamine levels (0 and 1·5 mg/kg). HC diets significantly decreased DGC, GRMBW, FIMBW, intestinal activities of amylase, lipase, Na+, K+-ATPase, CK, complexes I, III and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK: T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, mitochondrial transcription factor A, Opa-1, ND-1 and COX-1 and 2, while the opposite was true for ATP, AMP and reactive oxygen species, and the transcriptions of dynamin-related protein-1, fission-1 and mitochondrial fission factor. Dietarythiamine concentrations significantly increased DGC, GRMBW, intestinal activities of amylase, Na+, K+-ATPase, CK, complexes I and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, ND-1, COX-1 and 2, SGLT-1 and GLUT-2. Furthermore, a significant interaction between dietary CHO and thiamine was observed in DGC, GRMBW, intestinal activities of amylase, CK, complexes I and IV, ΔΨm, the AMP:ATP ratio, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, COX-1 and 2, SGLT-1 and GLUT-2. Overall, thiamine supplementation improved growth performance, and intestinal mitochondrial biogenesis and function of M. amblycephala fed HC diets.
Keyphrases
  • skeletal muscle
  • protein kinase
  • oxidative stress
  • transcription factor
  • weight loss
  • reactive oxygen species