Login / Signup

Prominence of the Instability of a Stabilizing Agent in the Changes in Physical State of a Hybrid Nanomaterial.

Grégory SpataroYohan ChampouretYannick CoppelMyrtil L Kahn
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
Shaping ability of hybrid nanomaterials is a key point for their further use in devices. It is therefore crucial to control it. To this end, it is necessary that the macroscopic properties of the material remain constant over time. Here, we evidence by multinuclear Magic-Angle Spinning Nuclear Magnetic Resonance spectroscopic study including 17 O isotope exchange that for a ZnO-alkylamine hybrid material, the partial carbonation of amine into ammonium carbamate molecules is behind the conversion from highly viscous liquid to a powdery solid when exposed to air. This carbonation induces modification and reorganization of the organic shell around the nanocrystals and affects significantly the macroscopic properties of the material such as it physical state, its solubility and colloidal stability. This study, straightforwardly extendable, highlights that the nature of the functional chemical group allowing connecting the stabilizing agent (SA) to the surface of the nanoparticles is of tremendous importance especially if the SA is reactive with molecules present in the environment.
Keyphrases
  • magnetic resonance
  • mental health
  • room temperature
  • high resolution
  • molecular docking
  • ionic liquid
  • mass spectrometry