Plasmonic Nanostructures-Decorated ZIF-8-Derived Nanoporous Carbon for Surface-Enhanced Raman Scattering.
Guan-Ye LiaoMei-Chin LienSirimuvva TadepalliKeng-Ku LiuPublished in: ACS omega (2022)
Surface-enhanced Raman scattering (SERS) is considered to be a highly sensitive platform for chemical and biological sensing. Recently, owing to their high porosity and large surface area, metal-organic frameworks (MOFs) have attracted considerable attention in sensing applications. Porous carbon nanostructures are promising SERS substrates due to their strong broadband charge-transfer resonance and reproducible fabrication. Furthermore, an extraordinarily large enhancement of the electromagnetic field enables plasmonic nanomaterials to be ideal SERS substrates. Here, we demonstrate the porous Au@Ag nanostructure-decorated MOF-derived nanoporous carbon (NPC) for highly efficient SERS sensing. Specifically, this plasmonic nanomaterial-NPC composite offers high Raman signal enhancement with the ability to detect the model Raman reporter 2-naphthalenethiol (2-NT) at picomolar concentration levels.