Login / Signup

Research and Design of Aggregation-Regulated Thermally Activated Delayed Fluorescence Materials for Time-Resolved Two-Photon Excited Fluorescence Imaging and Biological Monitoring.

Xue-Li HaoAi-Min RenLiang Zhou
Published in: The journal of physical chemistry letters (2023)
Exploring the nature of aggregation-regulated thermally activated delayed fluorescence (TADF) and proposing effective design strategies for two-photon excited TADF materials for time-resolved biological imaging and monitoring are urgent and encouraging. In this work, it is found that the aggregation effect not only plays an important role in decreasing the internal conversion decay rate but also strongly influences the singlet-triplet excited-state energy difference as well as the intersystem crossing rate. It is proposed that the transformation from prompt fluorescence materials to long lifetime TADF or phosphorescence materials can be accomplished by regulating the position of substituent groups, which provides an effective method to design and develop long afterglow materials. Then, a high-performance TADF compound with a large two-photon absorption cross section in the biological window (112 GM/775 nm), high TADF efficiency (nearly 100%), and long fluorescence lifetime (50.75 μs) has been designed, which demonstrates the potential application in time-resolved two-photon excited fluorescence imaging and biological detection.
Keyphrases