Login / Signup

In situ esterification and extractive fermentation for butyl butyrate production with Clostridium tyrobutyricum.

Zhong-Tian ZhangSteven TaylorYi Wang
Published in: Biotechnology and bioengineering (2017)
Butyl butyrate (BB) is a valuable chemical that can be used as flavor, fragrance, extractant, and so on in various industries. Meanwhile, BB can also be used as a fuel source with excellent compatibility as gasoline, aviation kerosene, and diesel components. The conventional industrial production of BB is highly energy-consuming and generates various environmental pollutants. Recently, there have been tremendous interests in producing BB from renewable resources through biological routes. In this study, based on the fermentation using the hyper-butyrate producing strain Clostridium tyrobutyricum ATCC 25755, efficient BB production through in situ esterification was achieved by supplementation of lipase and butanol into the fermentation. Three commercially available lipases were assessed and the one from Candida sp. (recombinant, expressed in Aspergillus niger) was identified with highest catalytic activity for BB production. Various conditions that might affect BB production in the fermentation have been further evaluated, including the extractant type, enzyme loading, agitation, pH, and butanol supplementation strategy. Under the optimized conditions (5.0 g L-1 of enzyme loading, pH at 5.5, butanol kept at 10.0 g L-1 ), 34.7 g L-1 BB was obtained with complete consumption of 50 g L-1 glucose as the starting substrate. To our best knowledge, the BB production achieved in this study is the highest among the ever reported from the batch fermentation process. Our results demonstrated an excellent biological platform for renewable BB production from low-value carbon sources. Biotechnol. Bioeng. 2017;114: 1428-1437. © 2017 Wiley Periodicals, Inc.
Keyphrases
  • growth factor
  • recombinant human
  • saccharomyces cerevisiae
  • healthcare
  • blood pressure
  • staphylococcus aureus
  • drinking water
  • climate change
  • insulin resistance
  • single cell
  • amino acid
  • cell wall
  • glycemic control