Login / Signup

Reversible Mg-Metal Batteries Enabled by a Ga-Rich Protective Layer through One-Step Interface Engineering.

Sunghee ShinJin Hwan KwakSi-Hyoung OhHyung-Seok KimSeung-Ho YuHee-Dae Lim
Published in: ACS applied materials & interfaces (2023)
Practical applications of Mg-metal batteries (MMBs) have been plagued by a critical bottleneck─the formation of a native oxide layer on the Mg-metal interface─which inevitably limits the use of conventional nontoxic electrolytes. The major aim of this work was to propose a simple and effective way to reversibly operate MMBs in combination with Mg(TFSI) 2 -diglyme electrolyte by forming a Ga-rich protective layer on the Mg metal (GPL@Mg). Mg metal was carefully reacted with a GaCl 3 solution to trigger a galvanic replacement reaction between Ga 3+ and Mg, resulting in the layering of a stable and ion-conducting Ga-rich protective film while preventing the formation of a native insulating layer. Various characterization tools were applied to analyze GPL@Mg, and it was demonstrated to contain inorganic-rich compounds (MgCO 3 , Mg(OH) 2 , MgCl 2 , Ga 2 O 3 , GaCl 3 , and MgO) roughly in a double-layered structure. The artificial GPL on Mg was effective in greatly reducing the high polarization for Mg plating and stripping in diglyme-based electrolyte, and the stable cycling was maintained for over 200 h. The one-step process suggested in this work offers insights into exploring a cost-effective approach to cover the Mg-metal surface with an ion-conducting artificial layer, which will help to practically advance MMBs.
Keyphrases
  • pet ct
  • ionic liquid
  • gold nanoparticles
  • ion batteries