Login / Signup

Diversity of Claviceps paspali reveals unknown lineages and unique alkaloid genotypes.

Héctor ObertiM Dalla-RizzaR ReynoS MurchioNora Adriana AltierEduardo Abreo
Published in: Mycologia (2020)
Claviceps species affecting Paspalum spp. are a serious problem, as they infect forage grasses such as Paspalum dilatatum and P. plicatulum, producing the ergot disease. The ascomycete C. paspali is known to be the pathogen responsible for this disease in both grasses. This fungus produces alkaloids, including ergot alkaloids and indole-diterpenes, that have potent neurotropic activities in mammals. A total of 32 isolates from Uruguay were obtained from infected P. dilatatum and P. plicatulum. Isolates were phylogenetically identified using partial sequences of the genes coding for the second largest subunit of RNA polymerase subunit II (RPB2), translation elongation factor 1-α (TEF1), β-tubulin (TUB2), and the nuc rDNA 28S subunit (28S). Isolates were also genotyped by randomly amplified polymorphic DNA (RAPD) and presence of genes within the ergot alkaloid (EAS) and indole-diterpene (IDT) biosynthetic gene clusters. This study represents the first genetic characterization of several isolates of C. paspali. The results from this study provide insight into the genetic and genotypic diversity of Claviceps paspali present in P. dilatatum and suggest that isolates from P. plicatulum could be considered an ecological subspecies or specialized variant of C. paspali. Some of these isolates show hypothetical alkaloid genotypes never reported before.
Keyphrases
  • genetic diversity
  • genome wide
  • genome wide identification
  • gene expression
  • dna methylation
  • copy number
  • climate change
  • single molecule
  • risk assessment
  • genome wide analysis