Spintronic Integrate-Fire-Reset Neuron with Stochasticity for Neuromorphic Computing.
Qu YangRahul MishraYunuo CenGuoyi ShiRaghav SharmaXuanyao FongHyunsoo YangPublished in: Nano letters (2022)
Spintronics has been recently extended to neuromorphic computing because of its energy efficiency and scalability. However, a biorealistic spintronic neuron with probabilistic "spiking" and a spontaneous reset functionality has not been demonstrated yet. Here, we propose a biorealistic spintronic neuron device based on the heavy metal (HM)/ferromagnet (FM)/antiferromagnet (AFM) spin-orbit torque (SOT) heterostructure. The spintronic neuron can autoreset itself after firing due to the exchange bias of the AFM. The firing process is inherently stochastic because of the competition between the SOT and AFM pinning effects. We also implement a restricted Boltzmann machine (RBM) and stochastic integration multilayer perceptron (SI-MLP) using our proposed neuron. Despite the bit-width limitation, the proposed spintronic model can achieve an accuracy of 97.38% in pattern recognition, which is even higher than the baseline accuracy (96.47%). Our results offer a spintronic device solution to emulate biologically realistic spiking neurons.