Nonpeptidic, Polo-Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target-Resistant Cells.
Danda ChapagaiGurusankar RamamoorthyJessy VargheseElmar NurmemmedovCampbell McInnesMichael D WyattPublished in: Journal of medicinal chemistry (2021)
PLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines. Furthermore, abbapolins show PLK1-specific binding and inhibitory activity, as measured by a cellular thermal shift assay and an ability to block phosphorylation of TCTP, a validated target of PLK1-mediated kinase activity. Additional evidence for engagement of PLK1 was obtained through the unique observation that abbapolins induce PLK1 degradation in a manner that closely matches antiproliferative activity. Moreover, abbapolins demonstrate antiproliferative activity in cells that are dramatically resistant to ATP-competitive PLK1 inhibitors.