First-Principles Calculation of Optoelectronic Properties in 2D Materials: The Polytypic WS 2 Case.
Louis MaduroSabrya E van HeijstSonia Conesa-BojPublished in: ACS Physical Chemistry Au (2022)
The phenomenon of polytypism, namely unconventional crystal phases displaying a mixture of stacking sequences, represents a powerful handle to design and engineer novel physical properties in two-dimensional (2D) materials. In this work, we characterize from first-principles the optoelectronic properties associated with the 2H/3R polytypism occurring in WS 2 nanomaterials by means of density functional theory (DFT) calculations. We evaluate the band gap, optical response, and energy-loss function associated with 2H/3R WS 2 nanomaterials and compare our predictions with experimental measurements of electron energy-loss spectroscopy (EELS) carried out in nanostructures exhibiting the same polytypism. Our results provide further input to the ongoing efforts toward the integration of polytypic 2D materials into functional devices.