Computed tomography-based radiomics approach in pancreatic tumors characterization.
Grigory KarmazanovskyIvan GruzdevValeriya TikhonovaEvgeny KondratyevAmiran RevishviliPublished in: La Radiologia medica (2021)
Radiomics (or texture analysis) is a new imaging analysis technique that allows calculating the distribution of texture features of pixel and voxel values depend on the type of ROI (3D or 2D), their relationships in the image. Depending on the software, up to several thousand texture elements can be obtained. Radiomics opens up wide opportunities for differential diagnosis and prognosis of pancreatic neoplasias. The aim of this review was to highlight the main diagnostic advantages of texture analysis in different pancreatic tumors. The review describes the diagnostic performance of radiomics in different pancreatic tumor types, application methods, and problems. Texture analysis in PDAC is able to predict tumor grade and associates with lymphovascular invasion and postoperative margin status. In pancreatic neuroendocrine tumors, texture features strongly correlate with differentiation grade and allows distinguishing it from the intrapancreatic accessory spleen. In pancreatic cystic lesions, radiomics is able to accurately differentiate MCN from SCN and distinguish clinically insignificant lesions from IPMNs with advanced neoplasia. In conclusion, the use of the CT radiomics approach provides a higher diagnostic performance of CT imaging in pancreatic tumors differentiation and prognosis. Future studies should be carried out to improve accuracy and facilitate radiomics workflow in pancreatic imaging.