Login / Signup

Copper Changes Intestinal Microbiota of the Cecum and Rectum in Female Mice by 16S rRNA Gene Sequencing.

Sufang ChengHuirong MaoYezhao RuanCong WuZheng XuGuoliang HuXiaoquan GuoCaiying ZhangHuabin CaoPing Liu
Published in: Biological trace element research (2019)
The aim of the present study was to investigate the effects of high concentrations of copper (Cu) on the cecum and rectum of intestinal microbiota in female mice. Twenty-four Kunming mice were weighed and randomly divided into two groups (n = 12 per group) including the control group and Cu group. Cu group was given drinking water with 5 mg/kg-bw copper chloride (CuCl2), while the control group was treated with drinking water without CuCl2. At the 90th day, results showed that compared with the control group, mice in the treatment group had a lower body weight, and the feces turned yellow and had a lower pH value. Histopathological lesions showed that the intestinal tissue from the treatment group had increased thickness of outer muscularis and smoothed muscle fiber, widened submucosa, decreased goblet cells, and showed blunting of intestinal villi and severe atrophy of central lacteal. In addition, at the genus level, 16S rRNA gene sequencing from the Cu group showed that Corynebacterium were significantly increased whereas Staphylococcaceae, Odoribacter, Rikenella, and Jeotgalicoccus were significantly decreased in the cecum. Dehalobacterium, Coprococcus, and Spirochaetales increased significantly whereas Salinicoccus, Bacillales, Staphylococcus, and Lactobacillales decreased sharply in the rectum. This study demonstrated that high concentrations of Cu could induce tissue injury and interrupt the homeostasis of microbiota.
Keyphrases