Physically and Chemically Crosslinked Hyaluronic Acid-Based Hydrogels Differentially Promote Axonal Outgrowth from Neural Tissue Cultures.
Andrej BajicBrittmarie AnderssonAlexander OssingerShima TavakoliOommen P VargheseNikos SchizasPublished in: Biomimetics (Basel, Switzerland) (2024)
Our aim was to investigate axonal outgrowth from different tissue models on soft biomaterials based on hyaluronic acid (HA). We hypothesized that HA-based hydrogels differentially promote axonal outgrowth from different neural tissues. Spinal cord sliced cultures (SCSCs) and dorsal root ganglion cultures (DRGCs) were maintained on a collagen gel, a physically crosslinked HA-based hydrogel (Healon 5 ® ) and a novel chemically crosslinked HA-based hydrogel, with or without the presence of neurotrophic factors (NF). Time-lapse microscopy was performed after two, five and eight days, where axonal outgrowth was assessed by automated image analysis. Neuroprotection was investigated by PCR. Outgrowth was observed in all groups; however, in the collagen group, it was scarce. At the middle timepoint, outgrowth from SCSCs was superior in both HA-based groups compared to collagen, regardless of the presence of NF. In DRGCs, the outgrowth in Healon 5 ® with NF was significantly higher compared to the rest of the groups. PCR revealed upregulation of NeuN gene expression in the HA-based groups compared to controls after excitotoxic injury. The differences in neurite outgrowth from the two different tissue models suggest that axons differentially respond to the two types of biomaterials.