Unveiling the influence of adaptation time on xylanase and arabinoxylan-oligosaccharide efficacy: a study on nutrient digestibility, viscosity, and scanning electron microscopy in the small and large intestine of growing pigs fed insoluble fiber.
Amy L PetryNichole F HuntleyMichael R BedfordJohn F PatiencePublished in: Journal of animal science (2023)
The experiment objective was to evaluate the impact of xylanase over time on viscosity and digestibility in growing pigs fed corn-based fiber. Twenty gilts with an initial body weight of 30.6 ± 0.2 kg (n = 5 per dietary treatment) were fitted with t-cannulae in the medial jejunum and terminal ileum, housed individually, and randomly assigned to one of four dietary treatments: low-fiber control (LF) with 10.4% total dietary fiber (TDF), 30% corn bran high-fiber control (HF; 26.4% TDF), HF + 100 mg xylanase/kg (XY; Econase XT 25P; AB Vista, Marlborough, UK), and HF + 50 mg arabinoxylan-oligosaccharide/kg (AX). Gilts were limit fed for three 17 d periods (P1, P2, P3); each included 5 d adaptation, 2 d fecal collection, 3 d ileal collection, 3 d jejunal collection, and 4 d related rate of passage study. Data were analyzed as repeated measures using a linear mixed model with surgery date as a random effect, and dietary treatment, period, and their interaction as fixed effects. Jejunal and ileal digesta viscosity did not differ among dietary treatments or periods (P > 0.10). There was a dietary treatment × period interaction for the apparent jejunal digestibility (AJD) of dry matter (DM), gross energy (GE), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), total arabinoxylan (T-AX), total NSP (T-NSP) and TDF (P≤0.05). In P1, LF had the greatest AJD of DM (15.5%), and relative to HF and AX, XY decreased it (9.3%, 10.1 %, and 6.3%, respectively). In P2, the AJD of DM in XY was greater than HF (11.7% vs. 9.1%) but did not differ from AX (10.5%). Relative to HF, in P3, XY increased AJD of DM (11.7 vs 15.3%), and AX decreased it (7.2%). For the AJD of NDF, AX performed intermediately in P1; in P2, relative to HF, XY and AX increased the AJD of NDF (8.4%, 13.1%, and 11.7%, respectively), and in P3, XY and LF did not differ (13.6 vs. 14.4%). A similar response was observed for the AJD of IDF and TDF, except for XY having the greatest AJD of IDF, T-AX, T-NSP, and TDF in P3 (P < 0.05). Compared to LF, irrespective of period, HF decreased the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of IDF, TDF, and NDF (P < 0.05). Relative to HF, XY partially mitigated this effect, improving the AID and ATTD of TDF, IDF, and NDF (P < 0.05). Increased corn-based fiber decreased nutrient digestibility, but XY partially mitigated that effect in the small intestine through enhanced fiber digestibility when given sufficient adaptation time.
Keyphrases
- acute heart failure
- body weight
- electron microscopy
- magnetic resonance imaging
- heart failure
- machine learning
- skeletal muscle
- computed tomography
- metabolic syndrome
- adipose tissue
- combination therapy
- insulin resistance
- diffusion weighted imaging
- artificial intelligence
- big data
- replacement therapy
- deep learning
- smoking cessation