Pulsatile Controlled Release and Stability Evaluation of Polymeric Particles Containing Piper nigrum Essential Oil and Preservatives.
Sidney Gomes AzevedoAna Luisa Farias RochaRonald Zico de Aguiar NunesCamila da Costa PintoȘtefan ŢăluHenrique Duarte da Fonseca FilhoJaqueline de Araújo BezerraAlessandra Ramos LimaFrancisco Eduardo Gontijo GuimarãesPedro Henrique CampeloVanderlei Salvador BagnatoNatalia Mayumi InadaEdgar Aparecido SanchesPublished in: Materials (Basel, Switzerland) (2022)
Considerable efforts have been spent on environmentally friendly particles for the encapsulation of essential oils. Polymeric particles were developed to encapsulate the essential oil from Piper nigrum based on gelatin and poly- ε -caprolactone (PCL) carriers. Gas Chromatography ((Flame Ionization Detection (GC/FID) and Mass Spectrometry (GC/MS)), Atomic Force Microscopy (AFM), Nanoparticle Tracking Analysis (NTA), Confocal Laser Scanning Microscopy (CLSM), Attenuated Total Reflectance-Fourier-transform Infrared Spectroscopy (ATR-FTIR), and Ultraviolet-Visible (UV-VIS) spectroscopy were used for the full colloidal system characterization. The essential oil was mainly composed of β -caryophyllene (~35%). The stability of the encapsulated systems was evaluated by Encapsulation Efficiency (EE%), electrical conductivity, turbidity, pH, and organoleptic properties (color and odor) after adding different preservatives. The mixture of phenoxyethanol/isotialzoni-3-one (PNE system) resulted in enhanced stability of approximately 120 and 210 days under constant handling and shelf-life tests, respectively. The developed polymeric system presented a similar controlled release in acidic, neutral, or basic pH, and the release curves suggested a pulsatile release mechanism due to a complexation of essential oil in the PCL matrix. Our results showed that the developed system has potential as an alternative stable product and as a controlling agent, due to the pronounced bioactivity of the encapsulated essential oil.
Keyphrases
- essential oil
- gas chromatography
- mass spectrometry
- atomic force microscopy
- high speed
- tandem mass spectrometry
- high resolution
- drug delivery
- single molecule
- high resolution mass spectrometry
- liquid chromatography
- cancer therapy
- gas chromatography mass spectrometry
- drug release
- high performance liquid chromatography
- optical coherence tomography
- solid phase extraction
- dna damage
- tissue engineering
- quality improvement
- human health
- oxidative stress
- real time pcr
- climate change
- bone regeneration