Login / Signup

Synthesis and in Silico Investigation of Organoselenium-Clubbed Schiff Bases as Potential M pro Inhibitors for the SARS-CoV-2 Replication.

Saad ShaabanAly AbdouAbdulrahman G AlhamzaniMortaga M Abou-KrishaMahmoud A Al-QudahMohamed AlaasarIbrahim YoussefTarek A Yousef
Published in: Life (Basel, Switzerland) (2023)
Since the first report of the organoselenium compound, ebselen, as a potent inhibitor of the SARS-CoV-2 M pro main protease by Z. Jin et al. (Nature, 2020), different OSe analogs have been developed and evaluated for their anti-COVID-19 activities. Herein, organoselenium-clubbed Schiff bases were synthesized in good yields (up to 87%) and characterized using different spectroscopic techniques. Their geometries were studied by DFT using the B3LYP/6-311 (d, p) approach. Ten FDA-approved drugs targeting COVID-19 were used as model pharmacophores to interpret the binding requirements of COVID-19 inhibitors. The antiviral efficiency of the novel organoselenium compounds was assessed by molecular docking against the 6LU7 protein to investigate their possible interactions. Our results showed that the COVID-19 primary protease bound to organoselenium ligands with high binding energy scores ranging from -8.19 to -7.33 Kcal/mol for 4c and 4a to -6.10 to -6.20 Kcal/mol for 6b and 6a . Furthermore, the docking data showed that 4c and 4a are good M pro inhibitors. Moreover, the drug-likeness studies, including Lipinski's rule and ADMET properties, were also assessed. Interestingly, the organoselenium candidates manifested solid pharmacokinetic qualities in the ADMET studies. Overall, the results demonstrated that the organoselenium-based Schiff bases might serve as possible drugs for the COVID-19 epidemic.
Keyphrases