Login / Signup

Study of Atmospheric Pressure Chemical Ionization Mechanism in Corona Discharge Ion Source with and without NH3 Dopant by Ion Mobility Spectrometry combined with Mass Spectrometry: A Theoretical and Experimental Study.

Younes ValadbeigiVahideh IlbeigiBartosz MichalczukMartin SaboStefan Matejcik
Published in: The journal of physical chemistry. A (2018)
Ionization of 2-nonanone, cyclopentanone, acetophenone, pyridine, and di- tert-butylpyridine (DTBP) in a corona discharge (CD) atmospheric pressure chemical ionization (APCI) ion source was studied using ion mobility (IMS) and time-of-flight mass spectrometry (TOF-MS). The IMS and MS spectra were recorded in the absence and presence of ammonia dopant. Without NH3 dopant, the reactant ion (RI) was H+(H2O) n, n = 3,4, and the MH+(H2O) x clusters were produced as product ions. Modeling of hydration shows that the amount of hydration ( x) depends on basicity of M, temperature and water concentration of drift tube. In the presence of ammonia (NH4+(H2O) n as RI) two kinds of product ions, MH+(H2O) x and MNH4+(H2O) x, were produced, depending on the basicity of M. With NH4+(H2O) n as RI, the product ions of pyridine and DTBP with higher basicity were MH+(H2O) x while cyclopentanone, 2-nonanone, and acetophenone with lower basicity produce MNH4+(H2O) x. To interpret the formation of product ions, the interaction energies of M-H+, H+-NH3, and H+-OH2 in the M-H+-NH3 and M-H+-OH2 and M-H+-M complexes were computed by B3LYP/6-311++G(d,p) method. It was found that for a molecule M with high basicity, the M-H+ interaction is strong leading in weakening of the H+-NH3, and H+-OH2 interactions in the M-H+-NH3 and M-H+-OH2 complexes.
Keyphrases