Login / Signup

Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer.

Guangmin SunJie LiuJingyan MaKai ZhangZhenlin SunQiang WuHao WangYiming Liu
Published in: Micromachines (2021)
In this paper, a multiband noncontact temperature-measuring microwave radiometer system is developed. The system can passively receive the microwave signal of the core temperature field of the human body without removing the clothes of the measured person. In order to accurately measure the actual temperature of multilayer tissue in human core temperature field, four frequency bands of 4-6 GHz, 8-12 GHz, 12-16 GHz, and 14-18 GHz were selected for multifrequency design according to the internal tissue depth model of human body and the relationship between skin depth and electromagnetic frequency. Used to measure the actual temperature of human epidermis, dermis, and subcutaneous tissue, a small and highly directional multiband angular horn antenna was designed for the radiometer front end. After the error analysis of the full-power microwave radiometer, a novel hardware architecture of the microwave interferometric temperature-measuring radiometer is proposed, and it is proven that the novel interferometric microwave radiometer has less error uncertainty through theoretical deduction. The experimental results show that the maximum detection sensitivity of the novel interferometric microwave temperature-measuring radiometer is 215 mV/dBm, and the temperature sensitivity is 0.047 K/mV. Compared with the scheme of the full-power radiometer, the detection sensitivity is increased 7.45-fold, and the temperature sensitivity is increased 13.89-fold.
Keyphrases
  • endothelial cells
  • radiofrequency ablation
  • induced pluripotent stem cells
  • primary care
  • healthcare
  • spinal cord
  • real time pcr