Ambient liquid extraction techniques enable direct mass spectrometry imaging (MSI) under ambient conditions with minimal sample preparation. However, currently an integrated probe for ambient liquid extraction-based MSI with high spatial resolution, high sensitivity, and stability is still lacking. In this work, we developed a new integrated probe made of pulled coaxial capillaries, named pulled flowprobe, and compared it with the previously reported single-probe. Mass transfer kinetics in probes was first investigated. The extraction kinetic curves during probe sampling indicate a narrower and higher peak shape for the pulled flowprobe than single-probe. Computational fluid dynamics analysis reveals that in the pulled flowprobe flow velocities are lower in liquid microjunction and higher in the transferring channels, resulting in higher extraction efficiencies and reduced band diffusion compared with single-probe and other probes with a similar flow route. Results of ambient liquid extraction-based MSI of lipids in rat cerebrum show that signals of low-abundance lipids were 2-5 times higher via a pulled flowprobe than via a single-probe, and 26 more lipid species were detected on brain tissue via a pulled flowprobe than via a single-probe. The stability of MSI with the pulled flowprobe was found to be higher than that with single-probe (averaged relative standard deviation = 18% vs 80%) by imaging a lab-made uniform ink coating. Moreover, in the pulled flowprobe, no retraction of the inner capillary from outer capillary is optimal for both sensitivity and stability. The spatial resolution of the pulled flowprobe (30-40 μm) was measured to be higher than that of a comparable size single-probe by calculation with the "80-20" rule. Finally, the new pulled flowprobe was applied to high-resolution MSI of lipids in the hippocampus, and localization of several lipids to the specific cell layers in the hippocampus region was observed. Thus, this work provides an alternative easily fabricated sampling probe with enhanced sensitivity, stability, and spatial resolution, promoting the use of ambient liquid extraction-based MSI in biological and clinical research.