Login / Signup

Identification of Poly-N-Acetyllactosamine-Carrying Glycoproteins from HL-60 Human Promyelocytic Leukemia Cells Using a Site-Specific Glycome Analysis Method, Glyco-RIDGE.

Akira TogayachiAzusa TomiokaMika FujitaMasako SukegawaErika NoroDaisuke TakakuraMichiyo MiyazakiToshihide ShikanaiHisashi NarimatsuHiroyuki Kaji
Published in: Journal of the American Society for Mass Spectrometry (2018)
To elucidate the relationship between the protein function and the diversity and heterogeneity of glycans conjugated to the protein, glycosylation sites, glycan variation, and glycan proportions at each site of the glycoprotein must be analyzed. Glycopeptide-based structural analysis technology using mass spectrometry has been developed; however, complicated analyses of complex spectra obtained by multistage fragmentation are necessary, and sensitivity and throughput of the analyses are low. Therefore, we developed a liquid chromatography/mass spectrometry (MS)-based glycopeptide analysis method to reveal the site-specific glycome (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile, Glyco-RIDGE). This method used accurate masses and retention times of glycopeptides, without requiring MS2, and could be applied to complex mixtures. To increase the number of identified peptide, fractionation of sample glycopeptides for reduction of sample complexity is required. Therefore, in this study, glycopeptides were fractionated into four fractions by hydrophilic interaction chromatography, and each fraction was analyzed using the Glyco-RIDGE method. As a result, many glycopeptides having long glycans were enriched in the highest hydrophilic fraction. Based on the monosaccharide composition, these glycans were thought to be poly-N-acetyllactosamine (polylactosamine [pLN]), and 31 pLN-carrier proteins were identified in HL-60 cells. Gene ontology enrichment analysis revealed that pLN carriers included many molecules related to signal transduction, receptors, and cell adhesion. Thus, these findings provided important insights into the analysis of the glycoproteome using our novel Glyco-RIDGE method. Graphical Abstract ᅟ.
Keyphrases