Self-Assembly of Janus Nanoparticles into Transformable Suprastructures.
Chengjun KangAndrei HonciucPublished in: The journal of physical chemistry letters (2018)
One of the greatest challenges in colloidal self-assembly is to obtain multiple distinct but transformable suprastructures from the same particles in monophasic solvent. Here, we combined deformable and rigid lobes in snowman-shaped amphiphilic Janus nanoparticles (JNPs). These JNPs exhibited excellent ability to self-assemble into micelles, worms, mini-capsules, giant- and elongated-vesicles. This rich suprastructural diversity was obtained by kinetic manipulation of the self-assembly conditions. The suprastructures consist of four to thousands of highly oriented JNPs with dimensions ranging from 500-nanometer to 30-μm. Moreover, the suprastructures can be transformed into one another or dissembled into individual particles. These features make colloidal assembly highly comparable to that of amphiphilic molecules, however, key differences were discovered.