Login / Signup

Evaluation of the Photocatalytic Activity of Distinctive-Shaped ZnO Nanocrystals Synthesized Using Latex of Different Plants Native to the Amazon Rainforest.

Robert Saraiva MatosJohn M Attah-BaahMichael D S MonteiroBenilde F O CostaMarcelo A MacêdoSimone P A Da PazRômulo Simões AngélicaTiago Marcolino de SouzaȘtefan ŢăluRosane M P B OliveiraNilson S Ferreira
Published in: Nanomaterials (Basel, Switzerland) (2022)
ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (V O , V Zn , Zn i ), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.
Keyphrases