Topology and giant circular dichroism of enantiomorphic Kagome bands in a designed covalent organic framework.
Quan GaoLei YangZhikuan WangDongmei LiBin CuiDesheng LiuPublished in: Physical chemistry chemical physics : PCCP (2024)
Covalent organic frameworks (COFs) are an emerging class of crystalline organic materials that have shown potential to be a new physical platform. In this work, a designed COF named AB-COF, which has novel enantiomorphic Kagome bands, is proposed and a feasible route to synthesize it is given. Via a combination of first-principles calculations and tight-binding analysis, we investigate the electronic structures and the phase interference of the COF. It becomes topologically nontrivial when doping one iodine atom in a unit cell. The Berry curvatures of the valence band (VB) and conduction band (CB) of the iodine-doped AB-COF show opposite values and different distributions. This provides an opportunity to study the new mechanism of circular dichroism from the different Berry curvatures of the VB and CB. Surprisingly, the circular-dichroism dissymmetry factor of AB-COF reaches a theoretical maximum value, and the oscillator strength data are in agreement with this result. When two iodine atoms are doped in a unit cell, the Berry curvatures of the VB and CB also have different values, but with more symmetry and similar distributions. This behavior enhances the circular dichroism with a wider range of dissymmetric absorption, and the circular dichroism dissymmetry factor also reaches its theoretical maximum value.