Login / Signup

Morphometrics and blood analytes of leatherback sea turtle hatchlings (Dermochelys coriacea) from Florida: reference intervals, temporal trends with clutch deposition date, and body size correlations.

Justin R PerraultAnnie Page-KarjianAshley N MorganLaura K BurnsNicole I Stacy
Published in: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology (2022)
The northwest Atlantic leatherback sea turtle (Dermochelys coriacea) population is exhibiting decreasing trends along numerous nesting beaches. Since population health and viability are inherently linked, it is important to establish species- and life-stage class-specific blood analyte reference intervals (RIs) so that effects of future disturbances on organismal health can be better understood. For hatchling leatherbacks, the objectives of this study were to (1) establish RIs for morphometrics and blood analytes; (2) evaluate correlations between hatchling morphometrics, blood analytes, and hatching success; and (3) determine temporal trends in hatchling morphometrics and blood analytes across nesting season. Blood samples were collected from 176 naturally emerging leatherback hatchlings from 18 clutches. Reference intervals were established for morphometrics and blood analytes. Negative relationships were noted between hatchling mass and packed cell volume, total white blood cells, heterophils, lymphocytes, and total protein and between body condition index (BCI) and immature red blood cells (RBC), RBC polychromasia and anisocytosis, and total protein. Clutch deposition date showed positive relationships with lymphocytes and total protein, and negative relationships with hatchling mass and BCI. Hatching success was positively correlated with mass, and negatively with total protein and glucose, suggesting that nutritional provisions in eggs, incubation time, and/or metabolic rates could change later in the season and affect survivorship. These various observed correlations provide evidence for increased physiological stress (e.g., inflammation, subclinical dehydration) in hatchlings emerging later in nesting season, presumably due to increased nest temperatures or other environmental factors (e.g., moisture/rainfall). Data reported herein provide morphometric and blood analyte data for leatherback hatchlings and will allow for future investigations into spatiotemporal trends and responses to various stressors.
Keyphrases