Login / Signup

Impaired Thiol/Disulfide Homeostasis in Children Diagnosed with Autism: A Case-Control Study.

Hamza AyaydınFethiye Kılıçaslanİsmail KoyuncuHakim ÇelikMustafa ÇalıkAhmet GüzelçiçekAdnan Kirmit
Published in: Journal of molecular neuroscience : MN (2021)
Although genetic factors occupy an important place in the development of autism spectrum disorder (ASD), oxidative stress and exposure to environmental toxicants have also been linked to the condition. The aim of this study was to examine dynamic thiol/disulfide homeostasis in children diagnosed with ASD. Forty-eight children aged 3-12 years diagnosed with ASD and 40 age- and sex-matched healthy children were included in the study. A sociodemographic data form was completed for all the cases, and the Childhood Autism Rating Scale (CARS) was applied to the patients. Thiol/disulfide parameters in serum were measured in all cases and compared between the two groups. Mean native thiol, total thiol concentrations (μmol/L), and median reduced thiol ratios were significantly lower in the ASD group than in the control group (p = 0.001 for all). Median disulfide concentrations (μmol/L), redox potential, and median oxidized thiol ratios were significantly higher in the ASD group than in the control group (p = 0.001, p = 0.001, and p = 0.001, respectively). ROC analysis revealed that area under the curve (AUC) values with "excellent discriminatory potential," for native thiol, total thiol, the reduced thiol ration, the oxidized thiol ratio, and redox potential and with "acceptable discriminatory potential" for disulfide were significantly capable of differentiating individuals with ASD from healthy individuals. No correlation was determined between the severity of autism and laboratory parameters. Impaired dynamic thiol/disulfide homeostasis was observed in children with ASD, suggesting that dynamic thiol/disulfide homeostasis in serum may be of diagnostic value in autism.
Keyphrases