Login / Signup

Comprehensive Understanding on the Aging Process and Mechanism of Microplastics in the Sediment-Water Interface: Untangling the Role of Photoaging and Biodegradation.

Xin SuMeng LiuJibo DouYao TangZhijiang LuJianming XuYan He
Published in: Environmental science & technology (2024)
Microplastics (MPs) in coastal wetlands have been of great concern, but information on the aging behavior of MPs in the sediment-water interface is still lacking. In this study, the contribution of a typical abiotic (photoaging) and biotic (biodegradation) process and the underlying aging pathway of MPs with different degradabilities (including polypropylene, polyethylene terephthalate, and polylactic acid) were studied. With a quantified relative importance of photoaging (>55%) vs biodegradation, the crucial contribution of photoaging on MP aging was highlighted. This was likely attributed to more generation of reactive oxygen species (ROS) under sunlight irradiation conditions, containing O 2 •- and H 2 O 2 . By raising higher the level of malondialdehyde (0.5-3.5 times as high as that in the dark condition), these photochemically formed ROS caused oxidative stress and inhibited the selective attachment of plastic-degrading microbes on the MP surface, thereby weakening the effect of biodegradation. On this basis, the aging characteristics and potential pathway of different MPs were revealed. The functional group of nondegradable polypropylene tends to be broken by ROS first, while biodegradation (Arthrobacter oryzae and Bacillus sp.) played a relatively dominant role in biodegradable polylactic acid. This study provides a new sight for the understanding on the aging behaviors of MPs in the sediment-water interface.
Keyphrases