Login / Signup

Dielectric barrier discharge and jet type plasma surface modifications of hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds.

Ozan OzkanHilal Turkoglu Sasmazel
Published in: Journal of biomaterials applications (2018)
In this study, dry air plasma jet and dielectric barrier discharge Ar + O2 or Ar + N2 plasma modifications and their effects on wettability, topography, functionality and biological efficiency of the hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds were reported. The samples treated with Ar + O2 dielectric barrier discharge plasma (80 sccm O2 flow rate, 3-min treatment) or with dry air plasma jet (15-cm nozzle-sample distance, 13-min treatment) had the closest wettability (49.11 ± 1.83 and 53.60 ± 0.95, respectively) to the commercial tissue culture polystyrene used for cell cultivation. Scanning electron microscopy images and X-ray photoelectron spectrometry analysis showed increase in topographical roughness and OH/NH2 functionality, respectively. Increased fluid uptake capacity for the scaffolds treated with Ar + O2 dielectric barrier discharge plasma (73.60% ± 1.78) and dry air plasma jet (72.48% ± 0.75) were also noted. Finally, initial cell attachment as well as seven-day cell viability, growth and proliferation performances were found to be significantly better for both plasma treated scaffolds than for untreated scaffolds.
Keyphrases