Smaller Is Not Always Better: Large-Size Hollow Polydopamine Particles Act as an Efficient Sun Protection Factor Booster for Sunscreens.
Yodsathorn WongngamGoragot SupanakornRaweewan ThiramanasDuangporn PolpanichPublished in: ACS biomaterials science & engineering (2021)
Ultraviolet (UV) radiation from the sun is the most harmful factor for human skin, causing sunburn, melasma, freckles, blemishes, and skin cancer. Sunscreens play a key role in blocking UV absorption on the skin. This study focused on the synthesis of hollow polydopamine (h-PDA), whose structure mimics the naturally occurring melanin in humans, for use as an active ingredient in sunscreens by means of a hard-template-based method. The reactions involve a spontaneous polymerization of a dopamine monomer in the presence of tris(hydroxymethyl)aminomethane (Tris) as a catalyst onto a polystyrene (PS) core template. Different sizes of the PS core (about 280 and 450 nm) and weight ratios of PS/DA were applied to elucidate the effect of the hollow diameter and thickness of the shell on the morphology and absorbance of the synthesized h-PDA. From UV absorption results, it was observed that the synthesized h-PDA particles with a larger core diameter (about 450 nm) and a thin shell thickness (about 57 nm) presented high UV absorption. We found that the structure of the synthesized h-PDA is mainly composed of a mixture of 5,6-dihydroxyindole and indole-5,6-quinone precursors covalently linked together. After blending the h-PDA particles with the base cream, the formulation containing h-PDA with a large void diameter of about 450 nm showed the highest sun protection factor (SPF) of up to 7.43, which is related to % booster of 234.7%. In addition, the h-PDA particles exhibited biocompatibility and cellular uptake in keratinocyte HaCaT cells after 24 h of incubation, indicating the potential to mimic natural melanin in preventing UV-induced DNA damage, which could be safely used as an alternative sunscreen.