Login / Signup

Anomalous Influence of Salt Concentration on Deposition of Poly(l-Lysine)/Cellulose Sulfate Multilayers Evidenced by In Situ ATR-FTIR.

Martin Müller
Published in: Molecules (Basel, Switzerland) (2020)
The deposition of polyelectrolyte (PEL) multilayers (PEMs) of poly(l-lysine)/cellulose sulfate (PLL/CS) onto germanium (Ge) substrates depending on salt concentration (cS) and deposition step z at constant PEL concentration cPEL = 0.01 M and pH = 7.0 was studied. In situ ATR-FTIR spectroscopy was used for the quantitative determination of alternate PLL/CS deposition profiles (adsorbed amount versus z) and total deposited PEM amount. By varying cS from 0 M to 1.0 M, a maximum of deposited amount was obtained at 0.1 M, so that both no salinity (0 M) and high salinity (1.0 M) revealed deposited amounts that were far lower than for mean salinity (0.1 M). Furthermore, in situ ATR-FTIR allowed to determine the detailed modulation of the PEL composition during the consecutive PEM deposition, which was interpreted as being due to both diffusion of given PEL from the PEM interior towards the outermost region and release of the PEM upon contact with the bulk oppositely charged PEL solution. Finally, ex situ ATR-FTIR measurements on the PEL solutions after deposition of PEM-20 revealed the distinct release of PEL from the PEM solely for cS = 1.0 M, due to the highest mobility of PEL under high salt conditions. These studies help to prepare functional PEM coatings with defined thicknesses and morphologies for the passivation and activation of material surfaces in the biomedical and food field.
Keyphrases
  • microbial community
  • high resolution
  • ionic liquid
  • escherichia coli
  • cystic fibrosis
  • oxidative stress
  • mass spectrometry
  • case control