Extended conjugation of ESIPT-type dopants in nematic liquid crystalline phase for enhancing fluorescence efficiency and anisotropy.
Wanying ZhangSatoshi SuzukiTsuneaki SakuraiHiroyuki YoshidaYusuke TsutsuiMasanori OzakiShu SekiPublished in: Physical chemistry chemical physics : PCCP (2020)
Organic compounds capable of excited-state intramolecular proton transfer (ESIPT) show fluorescence with a large Stokes shift and serve as solid-state emitters, luminescent dopants, and fluorescence-based sensing materials. Fluorescence of ESIPT molecules is usually increased in the solid state, but is weak in solvents due to the accelerated non-radiative decays by rotational motions of a part of the molecular core in these environments. Here we report, using a representative ESIPT motif 2-(2-hydroxyphenyl)benzothiazole (HBT), the extended-conjugation strategy of keeping sufficient fluorescence efficiency both in the solid state and in organic media. The introduction of an alkyl-terminated phenylene-ethynylene group into the HBT molecule dramatically enhances the fluorescence quantum yield from 0.01 to 0.20 in toluene and from 0.07 to 0.32 in a representative room-temperature nematic liquid crystal, 4-pentyl-4'-cyano biphenyl (5CB). The newly-synthesized CnP-C[triple bond, length as m-dash]C-HBT (n = 5 or 8) serves as a fluorescent dopant in 5CB and exhibits anisotropic fluorescence with the order parameter of 0.48, where the luminescence is controlled by the applied electric-field. The enhanced emission efficiency is rationalized by the larger height of energy barrier for the ESIPT process due to the introduction of phenylene-ethynylene groups.
Keyphrases