Nonlinear engagement of action observation network underlying action anticipation in players with different levels of expertise.
Yin-Hua ChenChih-Yen ChangShih-Kuei HuangNai-Shing YenPublished in: Human brain mapping (2020)
The goal of this study was to reconcile inconsistency of neural engagement underlying action anticipation between experts and nonexperts, as well as between correct and incorrect anticipations. Therefore, we asked novice, intermediate, and skilled baseball batters (N, IB, and SB) to anticipate their swing decisions in response to pitching videos of a strike or ball, using functional magnetic resonance imaging. Behavioral results confirmed the effect of expertise that is generally shown in a linear fashion. Imaging results instead revealed a nonlinear relationship between expertise level and the evoked response amplitude of nodes within the action observation network. The relationship was best captured by an inverted U-shaped quadratic response profile across the three groups such that IB exhibited higher activation than did both SB and N. These empirical findings extend the framework of predictive coding as well as of neural efficiency in anticipating the action of others, and they might be associated with the underlying process to interpret the goal of the observed action and prepare one's own response. Furthermore, the right anterior cerebellum showed different levels of activation for correct and incorrect anticipations in all groups, adding novel evidence of its subtle involvement in anticipation processes irrespective of expertise status.