Login / Signup

Topological polymeric glucosyl nanoaggregates in scaffold enable high-density piscine muscle tissue.

Ruihao NiuQipu XinJihui LaoXiao HuangQihe ChenJun YinJun ChenDonghong LiuEnbo Xu
Published in: Biomaterials (2024)
Upon the pressure of conventional land agriculture and marine environment facing the future of human beings, the emerging of alternative proteins represented by cultured meat is expected with a breakthrough of efficient, safe and sustainable production. However, the cell proliferation efficiency and final myofiber density in current animal-derived scaffolds are still limited. Here, we incorporated five plant-derived edible polymeric glucosyl nanoparticles (GNPs) into gelatin/alginate hydrogels to spontaneously form nanoaggregates where nanotopographies were observed inside. The nanoscale topological morphology significantly enhances the adhesion and proliferation efficiencies of piscine satellite cells (PSCs) in the tailored extracellular matrix of as-prepared scaffold. Physically, the presence of GNP-induced nanoaggregate increases the interaction between ITG-A1 (membrane protein of PSCs) and hydrogel microenvironment, which activates the focal adhesion-integrin-cytoskeleton mechanotransduction signaling to promote cell proliferation. With a controlled diameter of hydrogel filament, these inner topological GNP nanoaggregates can also improve the density, alignment and differentiation efficiency of PSCs. When cultured in vitro for 15 days, the cell density, size and orientation of muscle fibers in the GNP-stimulated cultured fish fillet are very similar to the total cell mass in native fish muscle tissue.
Keyphrases