Dopamine-Incorporated Dual Bioactive Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic Differentiation.
Xin ZhaoRuonan DongBaolin GuoPeter X MaPublished in: ACS applied materials & interfaces (2017)
Soft tissue engineering needs elastic biomaterials not only mimicking the elasticity of soft tissue but also possessing multiple bioactivity to promote cell adhesion, proliferation, and differentiation, which still remain ongoing challenges. Herein, we synthesized a series of dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers by combining the properties of elastomeric poly(citric acid-co-polycaprolactone) (CA-PCL) polyurethane elastomer, bioactive dopamine (DA), and electroactive aniline hexamer (AH). The chemical structures, electroactivity, conductivity, thermal properties, hydrophilicity and hydration ability, mechanical properties, and degradability of the polyurethane elastomers were systematically characterized. The elastomers showed excellent shape fixity ratio and shape recovery ability under physiological conditions. The elastomers' elongation and stress were tailored by the AH content, whereas the hydrophilicity and hydration ability of the elastomers were adjusted by the content of DA and AH, as well as the doping state of AH. The viability and proliferation results of C2C12 cells seeded on the elastomers showed their excellent cytocompatibility. Additionally, by analyzing the protein and gene level, the promotion effect on myogenic differentiation of C2C12 cells by these elastomers compared to that by control groups (PCL80 000, CA-PCL elastomer, and CA-PCL elastomer with the DA segment) was demonstrated. Furthermore, the results from subcutaneous implantation confirmed the elastomers' mild host response in vivo. These results represent that these dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers are promising candidates for soft tissue regeneration that is sensitive to electrical signals.
Keyphrases
- tissue engineering
- soft tissue
- induced apoptosis
- uric acid
- stem cells
- working memory
- signaling pathway
- skeletal muscle
- cell cycle arrest
- metabolic syndrome
- copy number
- endoplasmic reticulum stress
- oxidative stress
- smoking cessation
- cell death
- cell proliferation
- transcription factor
- stress induced
- high resolution
- protein protein