Login / Signup

Flexible Aggregation-Induced Emission-Active Hydrogel for On-Site Monitoring of Pesticide Degradation.

Yuehe LinTuhui WangHongxia LiLening ZhangHua XinGeyu Lu
Published in: ACS nano (2022)
Benefiting from the stimuli-responsive property and powerful loading capacity, functionalized hydrogels are favorable for the fabrication of sensing devices. Herein, we design aggregation-induced emission (AIE)-active hydrogel discs by embedding gold nanoclusters@zeolite-like imidazole framework (AuNCs@ZIF) composites in double-network hydrogels to build a sensitive pesticide biosensor. The hydrogel discs integrate an AIE effect of AuNCs, a stimuli-responsive property of ZIF, and a porous network structure of the hydrogel, which enhances the sensing sensitivity via boosting the stable fluorescent signal and antifouling performance. In conjunction with a homemade device, the fluorescence images of hydrogel discs could be transduced into data information for accurate quantification of chlorpyrifos pesticide with a detection limit of 0.2 ng/mL. The dynamic degradation of chlorpyrifos in Chinese cabbage is demonstrated to confirm the practical application of hydrogel discs. Such AIE-active hydrogel discs could be a plant health sensor for the on-site quantification of pesticide residues on crops, holding great promise for precision agriculture.
Keyphrases