Login / Signup

Selection of Soybean and Cowpea Cultivars with Superior Performance under Drought Using Growth and Biochemical Aspects.

Rafael de Souza MirandaBruno Sousa Figueiredo da FonsecaDavielson Silva PinhoJennyfer Yara Nunes BatistaRamilos Rodrigues de BritoEveraldo Moreira da SilvaWesley Santos FerreiraJose Helio CostaMarcos Dos Santos LopesRenan Henrique Beserra de SousaLarissa Fonseca NevesJosé Antônio Freitas PenhaAmanda Soares SantosJuliana Joice Pereira LimaStelamaris de Oliveira Paula-MarinhoFrancisco de Alcântara NetoÉvelyn Silva de AguiarClesivan Pereira Dos SantosEnéas Gomes-Filho
Published in: Plants (Basel, Switzerland) (2023)
Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted using seven soybean (AS3810IPRO, M8644IPRO, TMG1180RR, NS 8338IPRO, BMX81I81IPRO, M8808IPRO, and BÔNUS8579IPRO) and cowpea cultivars (Aracê, Novaera, Pajeú, Pitiúba, Tumucumaque, TVU, and Xique-xique) under four water levels (75, 60, 45, and 30% field capacity-FC) over 21 days. Growth, water content, membrane damage, photosynthetic pigments, organic compounds, and proline levels were analyzed. Drought stress significantly impacted the growth of both crops, particularly at 45 and 30% FC for soybean and 60 and 45% FC for cowpea plants. The BÔNUS8579IPRO and TMG1180RR soybean cultivars demonstrated the highest performance under drought, a response attributed to increased amino acids and proline contents, which likely help to mitigate membrane damage. For cowpea, the superior performance of the drought-stressed Xique-xique cultivar was associated with the maintenance of water content and elevated photosynthetic pigments, which contributed to the preservation of the photosynthetic efficiency and carbohydrate levels. Our findings clearly indicate promising leguminous cultivars that grow under water restriction, serving as viable alternatives for cultivating in water-limited environments.
Keyphrases
  • climate change
  • heat stress
  • oxidative stress
  • arabidopsis thaliana
  • amino acid
  • zika virus
  • human health