Login / Signup

Generalizing Bayesian phylogenetics to infer shared evolutionary events.

Jamie R OaksPerry L Wood JrCameron D SilerRafe M Brown
Published in: Proceedings of the National Academy of Sciences of the United States of America (2022)
Many processes of biological diversification can simultaneously affect multiple evolutionary lineages. Examples include multiple members of a gene family diverging when a region of a chromosome is duplicated, multiple viral strains diverging at a "super-spreading" event, and a geological event fragmenting whole communities of species. It is difficult to test for patterns of shared divergences predicted by such processes because all phylogenetic methods assume that lineages diverge independently. We introduce a Bayesian phylogenetic approach to relax the assumption of independent, bifurcating divergences by expanding the space of topologies to include trees with shared and multifurcating divergences. This allows us to jointly infer phylogenetic relationships, divergence times, and patterns of divergences predicted by processes of diversification that affect multiple evolutionary lineages simultaneously or lead to more than two descendant lineages. Using simulations, we find that the method accurately infers shared and multifurcating divergence events when they occur and performs as well as current phylogenetic methods when divergences are independent and bifurcating. We apply our approach to genomic data from two genera of geckos from across the Philippines to test if past changes to the islands' landscape caused bursts of speciation. Unlike previous analyses restricted to only pairs of gecko populations, we find evidence for patterns of shared divergences. By generalizing the space of phylogenetic trees in a way that is independent from the likelihood model, our approach opens many avenues for future research into processes of diversification across the life sciences.
Keyphrases
  • genome wide
  • sars cov
  • copy number
  • molecular dynamics
  • machine learning
  • single cell
  • big data
  • deep learning