Comparative Phylogeography and Phylogeny of Pennah Croakers (Teleostei: Sciaenidae) in Southeast Asian Waters.
Hong-Chiun LimAhasan HabibWei-Jen ChenPublished in: Genes (2021)
A broad-scale comparative phylogeographic and phylogenetic study of pennah croakers, mainly Pennahia anea, P. macrocephalus , and P. ovata was conducted to elucidate the mechanisms that may have driven the diversification of marine organisms in Southeast Asian waters. A total of 316 individuals from the three species, and an additional eight and six individuals of P. argentata and P. pawak were employed in this study. Two genetically divergent lineages each of P. argentata and P. anea (lineages L1 and L2) were respectively detected from the analyses based on mitochondrial cytochrome b gene data. Historical biogeography analysis with a multi-gene dataset revealed that Pennahia species most likely originated in the South China Sea and expanded into the eastern Indian Ocean, East China Sea, and northwestern Pacific Ocean through three separate range expansions. The main diversifications of Pennahia species occurred during Miocene and Pliocene periods, and the occurrences of lineage divergences within P. anea and P. argentata were during the Pleistocene, likely as a consequence of cyclical glaciations. The population expansions that occurred after the sea level rise might be the reason for the population homogeneity observed in P. macrocephalus and most P. anea L2 South China Sea populations. The structure observed between the two populations of P. ovata , and the restricted distributions of P. anea lineage L1 and P. ovata in the eastern Indian Ocean, might have been hampered by the northward flowing ocean current at the Malacca Strait and by the distribution of coral reefs or rocky bottoms. While our results support S. Ekman's center-of-origin hypothesis taking place in the South China Sea, the Malacca Strait serving as the center of overlap is a supplementary postulation for explaining the present-day high diversity of pennah croakers centered in these waters.