Login / Signup

Biomimetic Construction of Ferrite Quantum Dot/Graphene Heterostructure for Enhancing Ion/charge Transfer in Supercapacitors.

Min FuWei ChenYu LeiHao YuYuxiao LinMauricio Terrones
Published in: Advanced materials (Deerfield Beach, Fla.) (2023)
Spinel ferrites are regarded as promising electrode materials for supercapacitors (SCs) in virtue of their low cost and high theoretical specific capacitances. However, bulk ferrites suffer from limited electrical conductivity, sluggish ion transport, and inadequate active sites. Therefore, rational structural design and composition regulation of the ferrites are approaches to overcome these limitations. Herein, a general biomimetic mineralization synthetic strategy is proposed to synthesize ferrite (XFe 2 O 4 , X = Ni, Co, Mn) quantum dot/graphene (QD/G) heterostructures. Anchoring ferrite QD on the graphene sheets not only strengthens the structural stability, but also forms the electrical conductivity network needed to boost the ion diffusion and charge transfer. The optimized NiFe 2 O 4 QD/G heterostructure exhibits specific capacitances of 697.5 F g -1 at 1 A g -1 , and exceptional cycling performance. Furthermore, the fabricated symmetrical SCs deliver energy densities of 24.4 and 17.4 Wh kg -1 at power densities of 499.3 and 4304.2 W kg -1 , respectively. Density functional theory calculations indicate the combination of NiFe 2 O 4 QD and graphene facilitates the adsorption of potassium atoms, ensuring rapid ion/charge transfer. This work enriches the application of the biomimetic mineralization synthesis and provides effective strategies for boosting ion/charge transfer, which may offer a new way to develop advanced electrodes for SCs. This article is protected by copyright. All rights reserved.
Keyphrases
  • density functional theory
  • room temperature
  • carbon nanotubes
  • low cost
  • molecular dynamics
  • reduced graphene oxide
  • solid state
  • walled carbon nanotubes
  • molecular dynamics simulations
  • transition metal