Login / Signup

Study of potentiality of dexamethasone and its derivatives against Covid-19.

Debanjan MitraManish PaulHrudayanath ThatoiPradeep K Das Mohapatra
Published in: Journal of biomolecular structure & dynamics (2021)
In December 2019, COVID-19 epidemic was reported in Wuhan, China, and subsequently the infection has spread all over the world and became pandemic. The death toll associated with the pandemic is increasing day by day in a high rate. Herein, an effort has been made to identify the potentiality of commercially available drugs and also their probable derivatives for creation of better opportunity to make more powerful drugs against coronavirus. This study involves the in-silico interactions of dexamethasone and its derivatives against the multiple proteins of SARS-CoV-2 with the help of various computational methods. Descriptor parameters revealed their non-toxic effect in the human body. Ultimately docking studies and molecular dynamic simulation on those target protein by dexamethasone and its derivatives showed a high binding energy. Dexamethasone showed -9.8 kcal/mol and its derivative D5 showed -12.1 kcal/mol binding energy. Those scores indicate that dexamethasone has more therapeutic effect on SARS CoV-2 than other currently used drugs. Derivatives give the clue for the synthesis of a novel drug to remove SARS CoV-2. Until then, dexamethasone will be used as a potential inhibitor of SARS CoV-2.Communicated by Ramaswamy H. Sarma.
Keyphrases