Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat.
Gabrielle C HofmannEileen M HasserDavid D KlinePublished in: American journal of physiology. Regulatory, integrative and comparative physiology (2021)
The nucleus tractus solitarii (nTS) is the initial site of integration of sensory information from the cardiorespiratory system and contributes to reflex responses to hypoxia. Afferent fibers of the bilateral vagus nerves carry input from the heart, lungs, and other organs to the nTS where it is processed and modulated. Vagal afferents and nTS neurons are integrally associated with astrocytes and microglia that contribute to neuronal activity and influence cardiorespiratory control. We hypothesized that vagotomy would alter glial morphology and cardiorespiratory responses to hypoxia. Unilateral vagotomy (or sham surgery) was performed in rats. Prior to and seven days after surgery, baseline and hypoxic cardiorespiratory responses were monitored in conscious and anesthetized animals. The brainstem was sectioned and caudal, mid-area postrema (mid-AP), and rostral sections of the nTS were prepared for immunohistochemistry. Vagotomy increased immunoreactivity (-IR) of astrocytic glial fibrillary acidic protein (GFAP), specifically at mid-AP in the nTS. Similar results were found in the dorsal motor nucleus of the vagus (DMX). Vagotomy did not alter nTS astrocyte number, yet increased astrocyte branching and altered morphology. In addition, vagotomy both increased nTS microglia number and produced morphologic changes indicative of activation. Cardiorespiratory baseline parameters and hypoxic responses remained largely unchanged, but vagotomized animals displayed fewer augmented breaths (sighs) in response to hypoxia. Altogether, vagotomy alters nTS glial morphology, indicative of functional changes in astrocytes and microglia that may affect cardiorespiratory function in health and disease.
Keyphrases
- neuropathic pain
- body composition
- spinal cord
- high intensity
- inflammatory response
- endothelial cells
- spinal cord injury
- transcription factor
- heart failure
- public health
- atrial fibrillation
- clinical trial
- coronary artery disease
- lps induced
- blood brain barrier
- case report
- coronary artery bypass
- acute coronary syndrome
- lipopolysaccharide induced
- brain injury
- human health
- risk assessment
- protein protein