Vibrationally Induced Magnetism in Supramolecular Aggregates.
Jonas FranssonPublished in: The journal of physical chemistry letters (2023)
Magnetic phenomena in chemistry and condensed matter physics are considered to be associated with low temperatures. That a magnetic state or order is stable below a critical temperature as well as becoming stronger the lower the temperature is a nearly unquestioned paradigm. It is, therefore, surprising that recent experimental observations made on supramolecular aggregates suggest that, for instance, the magnetic coercivity may increase with an increasing temperature and the chiral-induced spin selectivity effect may be enhanced. Here, a mechanism for vibrationally stabilized magnetism is proposed, and a theoretical model is introduced with which the qualitative aspects of the recent experimental findings can be explained. It is argued that anharmonic vibrations, which become increasingly occupied with an increasing temperature, enable nuclear vibrations to both stabilize and sustain magnetic states. The theoretical proposal, hence, pertains to structures without inversion and/or reflection symmetries, for instance, chiral molecules and crystals.