Mechanically Stable Flexible Organic Photovoltaics with Silver Nanomesh for Indoor Applications.
Jae Won KimSung-Il ChungPan Kyeom KimTae-Gyu HaJiwoo YeopWoojin LeeShafket RasoolJin Young KimPublished in: ACS applied materials & interfaces (2023)
Enhanced device performance of flexible organic solar cells (FOSCs) was achieved according to the development of organic solar cells (OSCs). OSCs are promising candidates as energy sources for low-power supply systems such as the Internet of Things (IoT) under indoor lighting environments. To apply FOSCs to flexible or wearable applications, they must be mechanically stable. In this study, we fabricated FOSCs with silver nanomesh (AgNM) as the bottom transparent conductive electrode (TCE). Instead of indium tin oxide (ITO), AgNMs were prepared using three pitches of 25, 50, and 100 μm with a square pattern, using a poly(ethylene terephthalate) (PET) substrate. Notably, the device using AgNMs with a pitch of 25 μm exhibited a power conversion efficiency (PCE) of 14.93% under 1 sun illumination and 17.91% under 1000 lux of light-emitting diode (LED) light conditions. Flexible devices using AgNMs maintained over 92% of their initial PCE under 1 sun illumination (PCE decreased to 12.98 from 14.04%) and over 92% when tested under 1000 lux of LED light illumination (PCE decreased to 16.57 from 17.91%) after 1000 instances of bending. These results demonstrate the advantages of using AgNMs as an alternative TCE under both 1 sun and indoor lightning environments and are promising candidates for flexible applications.